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Smoothed particle hydrodynamics is reformulated in terms of the convolution of
the original hydrodynamics equations, and the new evolution equations for the parti-
cles are derived. The same evolution equation of motion is also derived using a new ac-
tion principle. The force acting on each particle is determined by solving the Riemann
problem. The use of the Riemann solver strengthens the method, making it accurate
for the study of phenomena with strong shocks. The prescription for the variable
smoothing length is shown. These techniques are implemented in strict conservation
form. The results of a few test problems are also shown. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) [7, 14] is a fully Lagrangian particle method
used to describe hydrodynamic phenomena. The Lagrangian particle methods are especially
suited to hydrodynamic problems that have large empty regions and moving boundaries.
Those problems naturally arise in engineering science as well as in geophysics and as-
trophysics. A variety of astrophysical problems have been studied by SPH because of
its simplicity in programming two- and three-dimensional codes and its versatility of in-
corporating various physical effects, such as self-gravity, radiative cooling, and chemical
reactions. A broad discussion of the method can be found in a review by Monaghan [18].
However, the inconsistency of the method is emphasized by Dilts [3, 4], who modified the
method by means of the moving-least-squares basis functions to obtain accurate derivatives
regardless of the positions of the SPH particles. Another weakness of the method is its
poor description of strong shocks. In the two- or three-dimensional calculation of colliding
gases, particles often penetrate to the opposite side. This unphysical effect can be partially
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eliminated by the so-called XSPH prescription [17] which does not introduce the (required)
additional dissipation but results in additional dispersion of the waves. Therefore it is very
desirable to construct a method that is simple and able to describe strong shock phenomena
accurately.

In this paper, a new method for handling shocks in particle hydrodynamics is constructed.
The force acting on each particle is determined by solving the Riemann problem (RP). This
use of the so-called Riemann solver is introduced as a simple analogy to the grid-based
method [6]. Previous attempts to introduce the Riemann solver into the particle method
failed to give the method an exact conservation form [9, 10]. This paper describes how to
include the exact Riemann solver in the strictly conservative particle method.

An alternative approach to including small but sufficient dissipation into a numerical
solution is to find a good limiter to switch a dissipative method and a less-dissipative
method [5, 21]. In principle, however, the switch is always an option in any numerical
scheme, including the present one, and its discussion is beyond the scope of this paper.

Section 2 provides a description of the method where we derive the evolution equations
for the particles in terms of the convolution of the original hydrodynamic equations with
the so-called kernel function. The same evolution equations are derived from an action
principle which is different from the previous ones [19, 20]; it sheds light on the “hidden”
approximation in the expression for the velocity field in SPH formalism. The detailed
explanation for the implementation is described in Section 3. The use of the Riemann solver
is analogous to the grid-based second-order Godunov scheme [24]. A variable smoothing
length is also considered. Numerical examples involving strong shocks are presented in
Section 4. Section 5 is the summary.

2. THE METHOD

We consider the following set of equations for a nonradiating inviscid fluid,

d�

dt
= −�∇ · v, (1)

dv
dt

= − 1

�
∇ P, (2)

du

dt
= − P

�
∇ · v, (3)

P = (� − 1)�u, (4)

where u denotes the specific internal energy, � denotes the ratio of specific heats, and other
symbols have their usual meanings.

In the standard SPH method, each particle has its own mass, and density at each particle’s
location is simply assigned by

�i =
∑

j

m j W (xi − x j , h), (5)

where subscripts denote particle labels, m j is the mass of the j th particle, W (x, h) is a
spherically symmetric kernel function which is normalized to be unity if integrated in
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space,

W (x, h) = W (−x, h), (6)∫
W (x, h) dx = 1, (7)

and h is the parameter of the kernel function. For later convenience we also define the
effective width heff of the kernel function W (x) by

h2
eff ≡ 2

∫
x2W (x, h) dx. (8)

Although there are many possible forms for W (x, h), we use the following Gaussian kernel
throughout in this paper:

W (x, h) =
[

1

h
√

�

]d

e−x2/h2
. (9)

In the above equation, d is the number of dimensions, and h is the so-called smoothing
length. Note that heff = h for this Gaussian kernel. We assume h is constant in space in
Sections 2.1–3.2. The spatially variable smoothing length is considered in Section 3.3 and
subsequent sections.

The standard procedure for deriving sets of evolution equations for SPH has been pre-
viously described [18]. In the following sections, we show new evolution equations are
derived from the original hydrodynamic equations. We then show that our new equation of
motion can be derived from the action principle for an appropriately defined Lagrangian
function.

2.1. Key Concept

In general any method of computational fluid dynamics inevitably brings errors into the
solutions. Therefore the essential feature of a method can be characterized by how errors
are introduced into the solutions. For example, in many kinds of grid-based methods, the
truncation of the Taylor-series expansion is the origin of the errors in the numerical solutions.
In the SPH formalism we consider the convolution of the physical function f (x) with the
kernel function,

〈 f 〉(x) ≡
∫

f (x′)W (x′ − x, h) dx′. (10)

We use the symbol 〈 〉 to denote the convolution. Taylor-series expansion of f around x = xi

in Eq. (10) shows that the difference of 〈 f 〉(xi ) and f (xi ) is second-order in heff:

〈 f 〉(xi ) = f (xi ) + h2
eff

4
∇2 f (x) + O

(
h4

eff

)
. (11)

Thus if we use 〈 f 〉 as an approximate solution for f , the errors of the second order in heff

are introduced by the convolution with the symmetric function W .
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We also have 〈
∂ f

∂x

〉
(x) =

∫
∂ f (x′)
∂x ′ W (x′ − x, h) dx ′

= −
∫

f (x′)
∂

∂x ′ W (x′ − x, h) dx′

= ∂

∂x

∫
f (x′)W (x′ − x, h) dx′, (12)

where we used integration by parts and Eq. (6). That is, the kernel convolution of ∇ f is
just ∇〈 f 〉.

If we define the density distribution by the summation of the kernel functions at particle
positions,

� (x) ≡
∑

j

m j W (x − x j , h), (13)

then we have the following identities:

1 =
∑

j

m j

�(x)
W (x − x j , h), (14)

0 =
∑

j

m j∇
[

W (x − x j , h)

�(x)

]
. (15)

These equations are the key equations in the present method. Using Eq. (14) the value of
the kernel convolution can be cast into the expression

fi ≡ 〈 f 〉(xi ) =
∫

f (x′)W (x′ − xi , h) dx ′

=
∫ ∑

j

m j
f (x′)
�(x′)

W (x′ − xi , h)W (x′ − x j , h) dx′

=
∑

j

� fi, j , (16)

where we define

� fi, j ≡
∫

m j
f (x′)
�(x′)

W (x′ − xi , h)W (x′ − x j , h) dx′. (17)

Note that mi� fi, j , is symmetric with respect to i and j . In this way the value ( fi ) of physical
variable f at the i th particle position is expressed as the summation of the contributions
(� fi, j ) from the surrounding particles. This expression shows the spirit of the present
method, although the actual detailed evolution equations are presented in the following
sections.

In contrast the standard SPH adopts the following form for � fi, j :

� fi, j ≈ m j
f (x j )

�(x j )
W (xi − x j , h). (18)
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This corresponds to the crude approximation W (x j − x′, h) ≈ �(x′ − x j ) in Eq. (17), where
�(x) is the Dirac � function. The standard SPH also implicitly assumes the approximate
equation

1 ≈
∑

j

m j

�(x j )
W (x − x j , h) (19)

instead of Eq. (14), although this is a very poor approximation.
In the MLSPH scheme by Dilts, an equation analogous to Eq. (14) is provided by the

moving-least-squares basis functions, although he needed somewhat heavy operations to
construct his basis functions. Note that our method does not restrict the functional form of
the kernel function to satisfy Eqs. (13) and (14).

2.2. Equation of Motion

To derive the appropriate evolution equation for particles we take the convolution of the
equation of motion (EoM), Eq. (2):

∫
dv(x)

dt
W (x − x′, h) dx = −

∫
1

�(x)
∇ P(x)W (x − x′, h) dx. (20)

The right-hand side of this equation can be transformed into the expression

−
∫ {[

∇ P(x)

�(x)

]
W (x − x′, h) + P(x)

� 2(x)
[∇�(x)]W (x − x′, h)

}
dx

=
∫ {

P(x)

�(x)
∇W (x − x′, h) − P(x)

� 2(x)

[
∇

∑
j

m j W (x − x j , h)

]
W (x − x′, h)

}
dx

=
∑

j

m j

∫
P

� 2
{∇W (x − x′, h)W (x − x j , h) − W (x − x′, h)∇W (x − x j , h)} dx,

(21)

where we integrated by parts and used the identity equation (14).
Thus if we adopt the following equation for the evolution of the particle positions,

ẍi ≡
∫

dv(x)

dt
W (x − xi , h) dx = −

∫
1

�(x)
∇ P(x)W (x − xi , h) dx, (22)

we obtain an evolution equation that is consistent and spatially second-order accurate to the
original hydrodynamical equation of motion,

mi ẍi = −mi

∑
j

m j

∫
P(x)

� 2(x)

[
∂

∂xi
− ∂

∂x j

]
W (x − xi , h)W (x − x j , h) dx, (23)

where the overdot indicates a time derivative. The antisymmetric appearance of i and j
on the right-hand side guarantees the conservation of the linear and angular momentum of
the particle system. From this equation we can deduce some properties of the EoM of the
particle system. For example, if the pressure distribution is constant in space, the acceleration
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vanishes exactly in Eq. (23), which is evident in Eq. (22). The evolution equation of MLSPH
also has a similar property although the standard SPH does not [3].

In this way the main approximation introduced into the present method is simply
expressed in Eq. (22), while the standard SPH formalism does not have such simple
explanation.

2.3. Energy Equation

We can follow the evolution of a barotropic fluid with P = P(�) using only the EoM
derived in the previous section. However, an additional evolution equation for energy is
required to describe the evolution of nonbarotropic fluid. The energy equation is also needed
to handle shocks. The energy equation guarantees the conservation of the total energy of
the system in the absence of other sources or losses of energy, such as radiative heating
or cooling. On the other hand, the strict conservation property in the numerical calculation
guarantees the accurate description of strong shocks. This is because the structure of a shock
wave is determined by the Rankine–Hugoniot relation, which is a direct consequence of
the physical conservation laws. Thus we must derive an energy equation that has a strict
conservation property and a convenient form to include additional physical dissipation.

As in Eq. (20), we multiply both sides of Eq. (3) by W (x − x′, h) and integrate in space
(with respect to x),

∫
du(x)

dt
W (x − x′, h) dx = −

∫
P(x)

�(x)
[∇ · v]W (x − x′, h) dx. (24)

The right-hand side of this equation can be transformed into the following expression:

−
∫

P(x)

�(x)
[∇ · v]W (x − x′, h) dx

= −
∫

1

�(x)
[∇ · Pv]W (x − x′, h) dx +

∫
1

�(x)
[v · ∇ P]W (x − x′, h) dx. (25)

At this point, we again make an approximation according to the following equation (see
also Eqs. 36 and 38):

∫
1

�(x)
[v · ∇ P]W (x − xi , h) dx =

∫
1

�(x)
[ẋi · ∇ P]W (x − xi , h) dx + O(h2). (26)

Then we have

u̇i ≡
∫

du(x)

dt
W (x − xi , h) dx

≈ −
∫

1

�(x)
[∇ · Pv]W (x − xi , h) dx +

∫
1

�(x)
[ẋi · ∇ P]W (x − xi , h) dx

=
∫

P[v − ẋi ] · ∇
[

W (x − xi , h)

�

]
dx

=
∑

j

m j

∫
P

� 2
[v − ẋi ] · [∇W (x − xi , h)W (x − x j , h)

− W (x − xi , h)∇W (x − x j , h)] dx, (27)
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where we have again used the identities (14) and (15). This form of the energy equation is
further modified to account for the physical dissipation in Section 3.2, and its conservation
property is shown in Section 3.4.

2.4. Action Principle

In this section we show another feature of the equation of motion in the present method.
In the case without dissipation, the equation of motion for the particles in our method can
be derived from an action principle. Therefore the time evolution of the particle system
can be formulated in a canonical transformation, which might further enable the possible
improvement of the time integration.

For the moment, we consider barotropic fluid in which pressure is a function of density
alone, P(�) = K�� . In this case, the equation of motion (Eq. [2]) for the fluid can be
derived by minimizing the action S, which is the time integral of the Lagrangian function
L expressed in Lagrangian coordinates:

S =
∫

L dt, (28)

L =
∫

L dx =
∫ [

1

2
�v2 − �u

]
dx. (29)

If we use Eulerian coordinates, the appropriate Lagrangian densityLmust include constraint
equations along with Lagrange multipliers [13, 22], which introduce additional complica-
tions. In contrast, the Lagrangian density shown above is simple and analogous to the
classical particle mechanics form, owing to the use of Lagrangian coordinates. In addition
we can derive the Hamiltonian and the evolution becomes the canonical transformation
which is free from dissipation. Although this formalism is for the continuous media, we
can use this formalism to derive the evolution equation for the system of particles.

First we consider the density field expressed in the following equation:

�(x) =
∑

j

m j W (x − x j , h). (30)

This continuous distribution of density is defined only by (the finite number of) the positions
of particles xi (i = 1, 2, 3, . . . , Np). A time derivative of the above equation gives

∂�(x)

∂t
=

∑
j

m j ẋ j · ∂

∂x j
W (x − x j , h) = −

∑
j

m j ẋ j∇W (x − x j , h) = −∇ · Fm, (31)

where we define

Fm(x) ≡
∑

j

m j ẋ j W (x − x j , h). (32)

Comparing Eq. (31) with the ordinary continuity equation, we realize that Fm defines the
mass flux,

Fm(x) = �(x)v(x). (33)
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From this equation we can deduce the definition of the velocity field given by the following
equation:

v(x) = Fm(x)

�(x)
=

∑
j m j ẋ j W (x − x j , h)∑

j m j W (x − x j , h)
. (34)

Note that at x = xi the above equation gives

v(xi ) = ẋi + 1

�i

∑
j

m j [ẋ j − ẋi ]W (xi − x j , h). (35)

The difference of v(xi ) and ẋi is second order in h. In a one-dimensional case, for example,
this can be shown by using an appropriate smooth function fx that satisfies fx (xi ) = ẋi (i =
1, 2, . . . , Np) as

vx (xi ) − ẋi

= 1

�i

∑
j

m j

{
∂ fx

∂x
[x j − xi ] + 1

2

∂2 fx

∂x2
[x j − xi ]

2 + O([x j − xi ]
3)

}
W (xi − x j , h)

= 1

�i

h2

2

{
∂ fx

∂x

∂�

∂x
+ 1

2

∂2 fx

∂x2
�

}
+ O(h4). (36)

Equations (30) and (34) can be used for v(x) and �(x) in Eq. (29) to obtain a Lagrangian
function that is defined only by the positions of particles:

L =
∫ 


[∑

j m j ẋ j W (x − x j , h)
]2

2
∑

j m j W (x − x j , h)
− K

� − 1

[ ∑
j

m j W (x − x j , h)

]�

 dx . (37)

This is the exact Lagrangian for the “fluid” of which density and velocity are constrained
by Eqs. (30) and (34).

Instead of adopting this complicated Lagrangian function, we now make an approxima-
tion for the velocity field by Taylor-series expansion:

v(x) = v(xi ) + [x − xi ] · ∇v(xi ) + O(|x − xi |2)
= ẋi + 1

�i

∑
j

m j [ẋ j − ẋi ]W (xi − x j , h) + [x − xi ] · ∇v(xi ) + O(|x − xi |2). (38)

From this we have ∫
v(x)W (x − xi , h) dx = ẋi + O(h2). (39)

With this equation we can simplify the kinetic term of the Lagrangian function as follows:∫
1

2
�v2 dx = 1

2

∫
Fm · v dx

= 1

2

∑
j

m j ẋ j ·
∫

vW (x − x j , h) dx

= 1

2

∑
j

m j ẋ2
j + O(h2). (40)
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Now we can define a simple Lagrangian function that is second-order accurate in h as

Lnew ≡
∑

i

mi

[
1

2
ẋ2

i −
∫

u(x)W (x − xi , h) dx
]
. (41)

We can derive the evolution equation for the particles by minimizing the action S =∫
Lnew dt . In fact the Euler–Lagrange equation,

d

dt

∂Lnew

∂ ẋi
− ∂Lnew

∂xi
= 0, (42)

gives

ẍi = −
∑

j

m j

∫
P(x)

� 2(x)

[
∂

∂xi
− ∂

∂x j

]
W (x − xi , h)W (x − x j , h) dx. (43)

The manipulation to derive Eq. (43) from Eq. (42) is explained in the Appendix. This
equation is the same as Eq. (23).

This is the exact evolution equation for the system in which the Lagrangian function
is defined by Eq. (41). The space symmetry of Lnew guarantees the conservation of linear
momentum and angular momentum, which is also obvious in the antisymmetric appearance
of i and j in Eq. (43).

If we start with a more simplified Lagrangian function,

LSPH =
∑

i

m j

[
1

2
ẋ2

i − u(�i )

]
, (44)

we would obtain the standard SPH equation [19],

ẍi = −
∑

j

m j

[
Pi

� 2
i

+ Pj

� 2
j

]
∂

∂xi
W (xi − x j , h). (45)

This Lagrangian function LSPH for the standard SPH can be obtained if we make a crude
approximation, W (x − xi , h) ≈ �(x − xi ), in Eq. (41). Thus the difference between the
evolution equations (43) and (45) is related to the difference in degree of approximation to
the original Lagrangian function of the fluid. In this context, the standard SPH also assumes
an approximation for the velocity field Eq. (39), as in the present method.

Dilts [3] reported that the SPH approximation is derived by means of the Galerkin approx-
imation followed by the kernel approximation. In contrast to the Galerkin approximation,
the above action principle has deep physical consequences, such as the conservation of the
linear and angular momentum of the particle system. In addition the Hamiltonian structure
of the method possibly gives further sophistication to the time-integration scheme (see, e.g.,
the symplectic integrator for the astronomical self-gravitating system [25]), although that
topic is beyond the scope of this paper.

3. IMPLEMENTATION

In this section we describe the numerical implementation of the method in detail.
In Section 3.1 we describe how to evaluate the integrals in the basic evolution equations.
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Section 3.2 introduces the Riemann solver into the method. Section 3.3 shows the prescrip-
tion for the variable smoothing length. In Section 3.4 we show that the present method
remains a fully conservative scheme even after the discretization in space and time.

3.1. Convolution

In this section we describe how to evaluate the spatial integrals in Eqs. (23) and (27).
First we must know the distribution of �−2(x) to calculate the integrals. That is, we must
construct an appropriate interpolation (or extrapolation) function for �−2(x) around each
pair (i and j) of particles.

For convenience, we define the s-axis, which is along the vector xi − x j and has its
origin at (xi − x j )/2. We use s⊥ to symbolically denote the components of the axes that
are perpendicular to the s-axis and define the s-coordinate system. The unit vector in the
s-direction is ei, j ≡ (xi − x j )/|xi − x j |. We set �si, j ≡ si − s j = |xi − x j |, where si and
s j denote the s-components of the positions xi and x j , respectively.

We define the specific volume and its gradient as follows:

V (x) = 1

�(x)
, (46)

∇V (x) = − 1

� 2(x)
∇�(x) = − 1

� 2(x)

∑
j

m j∇W (x − x j ). (47)

We will make an approximate function for V (x) in the s-coordinates. In the following
sections, two sets of equations with different orders of accuracy are shown.

3.1.1. Linear Interpolation

The most simple choice for the approximate function is the linear interpolation which is
expressed as

V (s) = 1

� (s)
= Ci, j s + Di, j , (48)

where

Ci, j = V (xi ) − V (x j )

�si, j
,

(49)

Di, j = V (xi ) + V (x j )

2
.

From this we obtain

V 2(s) = 1

� 2(s)
= [Ci, j s + Di, j ]

2. (50)

With this interpolation, we can calculate the integral as

∫
�−2(x)W (x − xi , h)W (x − x j , h) dx = V 2

i, j (h)W (xi − x j ,
√

2h), (51)
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where we define

V 2
i, j (h) ≡ 1

4
h2C2

i, j + D2
i, j . (52)

The above calculation corresponds to an approximation based on the linear expansion of
1/�2 in the perpendicular direction to the vector xi − x j ; that is,

�−2(s) = V 2(s) + s⊥ · ∇V 2(s) + O(|s⊥|2). (53)

Note that the integral of [s⊥ · ∇V 2(s)] in Eq. (51) vanishes identically owing to the symmetry
of the kernel.

Next, we consider the following integral for arbitrary function f (x):

∫
f (x)

� 2(x)
W (x − xi , h)W (x − x j , h) dx. (54)

When we have some interpolation for the function f (x) and �−2(x), we can define the
weighted average f ∗

i, j by the following equation:

∫
f (x)

� 2(x)
W (x − xi , h)W (x − x j , h) dx = f ∗

i, j

∫
1

� 2(x)
W (x − xi , h)W (x − x j , h) dx.

(55)

A straightforward calculation of the above equation with the linear approximation for the
function f (x)(≈s[ fi − f j ]/�si, j + [ fi + f j ]/2) and the specific choice (Eq. (50)) of the
interpolation of �−2(x) gives

f ∗
i, j = fi − f j

�si, j
s∗

i, j + fi + f j

2
, (56)

where

s∗
i, j = h2Ci, j Di, j

2V 2
i, j

. (57)

That is, f ∗
i, j is the value of the (linearly approximated) function f at the position s∗

i, j .
The evolution equations now become

ẍi = −2
∑

j

m j P∗V 2
i, j (h)

∂

∂xi
W (xi − x j ,

√
2h), (58)

u̇i = −2
∑

j

m j ([Pv]∗ − P∗ẋi )V 2
i, j (h)

∂

∂xi
W (xi − x j ,

√
2h), (59)

where the formal meanings of P∗ and [Pv]∗ are the values at position s∗
i, j of the linearly

interpolated functions. In Section 3.2, however, we will change the values of these quantities
by considering the physical dissipation.



SPH WITH RIEMANN SOLVER 249

3.1.2. Cubic Spline Interpolation

Another convenient method for the approximation is based on the cubic spline interpo-
lation of �−1 along the s-axis,

V (s) = 1

� (s)
= Ai, j s

3 + Bi, j s
2 + Ci, j s + Di, j , (60)

where

Ai, j = −2
(Vi − Vj )

(�si, j )3
+ (V ′

i + V ′
j )

(�si, j )2
,

Bi, j = 1

2

(V ′
i − V ′

j )

�si, j
,

Ci, j = 3

2

(Vi − Vj )

�si, j
− 1

4
(V ′

i + V ′
j ), (61)

Di, j = 1

2
(Vi + Vj ) − 1

8
(V ′

i − V ′
j )�si, j ,

Vi = V (xi ),

Vj = V (x j ),

V ′
i = ei, j · ∇V (xi ),

V ′
j = ei, j · ∇V (x j ).

Then,

V 2(s) = 1

�2(s)
= [Ai, j s

3 + Bi, j s
2 + Ci, j s + Di, j ]

2. (62)

In this case Eq. (51) becomes

∫
�−2(x)W (x − xi , h)W (x − x j , h) dx = V 2

i, j (h)W (xi − x j ,
√

2h), (63)

where we define

V 2
i, j (h) ≡ 15

64
h6 A2

i, j + 3

16
h4

(
2Ai, j Ci, j + B2

i, j

) + 1

4
h2

(
2Bi, j Di, j + C2

i, j

) + D2
i, j . (64)

Equation (57) becomes

s∗
i, j =

15
32 h6 Ai, j Bi, j + 3

8 h4(Ai, j Di, j + Bi, j Ci, j ) + 1
2 h2Ci, j Di, j

V 2
i, j

. (65)

To avoid undershooting and overshooting of the interpolating function, we need to use linear
interpolation (Eq. (48)) in the case V ′

i V ′
j < 0.
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3.2. The Usage of the Riemann Solver

The description of shock waves requires a (physical) dissipative process which is not con-
sidered in the fundamental equations (Eqs. (1)–(4)). The Godunov scheme and its second-
order (MUSCL [24]) and third-order (PPM [2]) sequels use the exact Riemann solver to
include the (possibly) minimum and sufficient amount of dissipation into the method. At
present these methods remain state-of-the-art grid-based methods for computational fluid
dynamics. In this paper we introduce the exact and spatially second-order Riemann solver
into the particle method.

The Godunov scheme uses the result of the Riemann problem (RP) at each cell interface in
the calculation of numerical flux (see, e.g., [24]). Likewise, we want to use the result of the RP
in the vicinity of the midpoint of the i th and the j th particles. This is achieved by modifying
the values of P∗ and [Pv]∗ in Eqs. (58), (59). The finite-difference expression for this is

�ẋi

�t
= −

∑
j

m j P∗
i, j

∫
1

� 2(x)

[
∂

∂xi
− ∂

∂x j

]
W (x − xi , h)W (x − x j , h) dx

= −2
∑

j

m j P∗V 2
i, j (h)

∂

∂xi
W (xi − x j ,

√
2h), (66)

�ui

�t
= −

∑
j

m j P∗
i, j (v

∗
i, j − ẋ∗

i )

∫
1

� 2(x)

[
∂

∂xi
− ∂

∂x j

]
W (x − xi , h)W (x − x j , h) dx

= 2
∑

j

m j (P∗v∗ − P∗ẋ∗
i )V 2

i, j (h)
∂

∂xi
W (xi − x j ,

√
2h), (67)

where � stands for the finite difference of each variable, ẋ∗
i is the time-centered velocity of

the i th particle, and P∗
i, j and v∗

i, j are the results of RP between the i th and the j th particles.
How to define and calculate these variables is explained below.

Figure 1 shows a schematic picture of the distribution of the function f (s) in the vicinity of
the i th and j th particles. According to the original (grid based) Godunov scheme, it is natural
to define the interface of the two regions for the RP at s∗

i, j . To make a spatially second-order
method like MUSCL, we define the piecewise linear distribution of the physical variable

FIG. 1. (a) A schematic picture of the distribution of the function f (s) in the vicinity of the i th and j th
particle. The value of the weighted average f ∗

i, j is determined by Eq. (56), and its location s∗
i, j by Eq. (57) or

(65). (b) The setup of the Riemann problem. We define the piecewise linear distribution of physical variable f (s)
in both the i th and j th region. The initial values of each side of the one-dimensional Riemann problem are the
average values in each domain of dependence.
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f (s) in both the i th and the j th regions. The gradient of f (s) in each region can be simply
assigned by the gradient at each particle’s position. The initial values on each side of a
one-dimensional Riemann problem are the average values of each domain of dependence,
which is expressed as

�R = �i +
(

∂�

∂s

)
i

[
s∗

i, j + Cs,i
�t

2
− si

]
,

PR = Pi +
(

∂ P

∂s

)
i

[
s∗

i, j + Cs,i
�t

2
− si

]
,

vR = vi +
(

∂v

∂s

)
i

[
s∗

i, j + Cs,i
�t

2
− si

]
,

(68)

�L = � j +
(

∂�

∂s

)
j

[
s∗

i, j − Cs, j
�t

2
− s j

]
,

PL = Pj +
(

∂ P

∂s

)
j

[
s∗

i, j − Cs, j
�t

2
− s j

]
,

vL = v j +
(

∂v

∂s

)
j

[
s∗

i, j − Cs, j
�t

2
− s j

]
,

where

vi = vi · ei, j ,
(69)

v j = v j · ei, j ,

and Cs,i denotes the sound speed at xi . Thus we can solve the RP at the interface s∗
i, j . The

detailed explanation for the solution of RP can be found in [2, 24], and we will not repeat
it here.

After solving the RP at s∗
i, j , we have the resulting pressure P∗

i, j and the projected velocity
v∗

i, j . Three-dimensional (or two dimensional) velocity v∗
i, j is calculated as

v∗
i, j = v∗

i, j ei, j + [vi, j − vi, j ei, j ], (70)

where

vi, j = vi [1/2 + �] + v j [1/2 − �], (71)

vi, j = vi [1/2 + �] + v j [1/2 − �], (72)

� = s∗
i, j

�si, j
. (73)

P∗
i, j and v∗

i, j are used in the calculation of the right-hand side of Eqs. (66) and (67). Note
that Eqs. (71)–(73) are not needed in the actual calculation, because the bracketed second
term on the right-hand side of Eq. (70) is perpendicular to ei, j and vanishes identically in
Eq. (67).

In the higher order grid-based methods (e.g., MUSCL and PPM) we need to impose a
monotonicity constraint on the gradients of the physical variable to obtain a stable descrip-
tion of the discontinuity. This is also true in the present method. Our experience shows that
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the monotonicity constraint imposed only on the velocity field suffices to make the method
stable. Thus in the actual calculation of our method, we mimic the monotonicity constraints
by setting (

∂v

∂s

)
i

=
(

∂v

∂s

)
j

= 0 if

(
∂v

∂s

)
i

×
(

∂v

∂s

)
j

< 0. (74)

The numerical scheme should be first order in space at the surface of the shock wave.
The shock surface tends to include a few particles in the actual calculation. Therefore, when
the velocity difference of a certain particle pair corresponds to the sound speed divided by
a small number, the pair is considered to be in the shock surface, and we need to use the
first-order Riemann solver for it. We implement this condition by setting(

∂ f

∂s

)
i

=
(

∂ f

∂s

)
j

= 0 if Cshock ei, j · (v j − vi ) > min(Cs,i , Cs, j ), (75)

where f = � , P , v and Cshock is a numerical constant corresponding to the number of
particles at the shock surface. We adopt Cshock = 3 throughout in this paper.

3.3. Variable Smoothing Length

In the previous sections, we assumed that the smoothing length, h, is constant in space. In
actual calculation we need to change h to enlarge the dynamic range of the spatial resolution.
Therefore we have to extend the present method for a variable smoothing length.

The formal derivation of the evolution equation with a variable smoothing length is the
same as Section 2.2, except that we start with the definition of density as

�(x) =
∑

j

m j W (x − x j , h[x]). (76)

This definition of density corresponds to the so-called “gather” formulation of SPH [8].
The resulting evolution equations are the following:

ẍi =
∑

j

m j P∗
i, j

∫
1

� 2(x)
{∇W (x − xi , h[x])W (x − x j , h[x])

− W (x − xi , h[x])∇W (x − x j , h[x])} dx, (77)

u̇i =
∑

j

m j P∗
i, j (v

∗
i, j − vi )

∫
1

� 2(x)
{∇W (x − xi , h[x])W (x − x j , h[x])

− W (x − xi , h[x])∇W (x − x j , h[x])} dx. (78)

These equations are essentially the same as Eqs. (66) and (67), although the analytic
integration for these equations is not possible even with the polynomial approximation for
�−2(x). Therefore we prefer to use a simple approximation for the integral, as in the form

�ẋi

�t
= −

∑
j

m j P∗
[

V 2
i, j (hi )

∂

∂xi
W (xi − x j ,

√
2hi )

+ V 2
i, j (h j )

∂

∂xi
W (xi − x j ,

√
2h j )

]
, (79)
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�ui

�t
= −

∑
j

m j [P∗v∗ − P∗ẋ∗
i ]

[
V 2

i, j (hi )
∂

∂xi
W (xi − x j ,

√
2hi )

+ V 2
i, j (h j )

∂

∂xi
W (xi − x j ,

√
2h j )

]
, (80)

where, in spirit, we used hi for the half of the integration space which includes xi and h j

for the other half.
The above approximations assume that h(x) should not vary much within the neigh-

borhood of each particle. One possible way to determine the smoothing length with this
constraint is by

hi = �

[
mi

�∗
i

]1/d

, (81)

where

�∗
i =

∑
j

m j W (xi − x j , h∗
i ), h∗

i = hi Csmooth. (82)

�∗ is more smooth than � itself if Csmooth > 1. Numerical experiments shows that � � 1
with Csmooth � 2 works fine in Section 4. The effective number of neighbors around each
particle depends on the ratio of the smoothing length and the mean separation of particles
at that particle. For example, we can usually ignore the contribution from the j th to the i th
particle if their distance |xi − x j | is larger than 3hi , because exp(−32) ≈ 1.234 × 10−4.
Thus, in one-dimensional calculations, the number of neighbors for calculating Eq. (82) is
6�Csmooth excluding the i th particle. The number of neighbors becomes about 28�2C2

smooth

in two-dimensional calculations and about 113�3C3
smooth in three-dimensional calculations.

3.4. Conservation Property

The final discretized form for the equation of motion for the i th particle becomes the
following:

�ẋi = −�t
∑

j

m j P∗
i, j

[
V 2

i, j (hi )
∂

∂xi
W (xi − x j ,

√
2hi )

+ V 2
i, j (h j )

∂

∂xi
W (xi − x j ,

√
2h j )

]
. (83)

This calculation guarantees the conservation of the total momentum of the system,∑
i

mi�ẋi = 0, (84)

because the terms in the square bracket in Eq. (83) are antisymmetric in i and j .
The final form for the equation of energy for the i th particle becomes

�ui = −�t
∑

j

m j P∗
i, j (v

∗
i, j − ẋ∗

i )

[
V 2

i, j (hi )
∂

∂xi
W (xi − x j ,

√
2hi )

+ V 2
i, j (h j )

∂

∂xi
W (xi − x j ,

√
2h j )

]
, (85)
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where we define the time-centered velocity of the i th particle

ẋ∗
i = ẋi + 1

2
�ẋi . (86)

This expression guarantees the conservation of the total energy of the system, because

�
∑

i

mi

[
1

2
ẋ2

i + ui

]
=

∑
i

mi

{
1

2
[ẋi + �ẋi ]

2 + [ui + �ui ] − 1

2
ẋ2

1 − ui

}

=
∑

i

mi

{
�ẋi

[
ẋi + 1

2
�ẋi

]
+ �ui

}

= −
∑

i

∑
j

mi m j P∗
i, j v

∗
i, j

[
V 2

i, j (hi )
∂

∂xi
W (xi − x j ,

√
2hi )

+ V 2
i, j (h j )

∂

∂xi
W (xi − x j ,

√
2h j )

]
= 0. (87)

Thus the present scheme conserves energy exactly. This is in contrast to the ordinary
energy equation of the standard SPH, which is only accurate in the first order in time
(see, e.g., [1, 18]). We also note that the conservation of energy does not require a constant
smoothing length, which is obvious in Eq. (87). This is because the expression for the total
energy in the numerical calculation

∑
i mi (

1
2 x2

i + ui ) does not explicitly depends on the
choice of smoothing length. In other words, a sudden change of smoothing length at any
time step does not change the numerical value of the total energy.

3.5. Overall Procedure

In this section we summarize the actual procedures in the sequence of executions. The
main loop of the time integration corresponds to Steps 1–4.

Step 0: Problem setup. We first set up the problem in the computer program. We ap-
propriately place the particles to represent the density distribution that corresponds to the
initial condition of the problem to solve. This may require some relaxation technique to
find the appropriate positions of the particles [18]. We also determine �i , ∇�i , and hi to
start the main loop of the time integration. Various constants and the initial variables are
calculated in this step. For example, we determine the initial time step �t .

Step 1: Gradient calculation. We calculate the gradient of physical variables P , v for
use in the Riemann solver.

Step 2: Source term calculation. We calculate the RHS of Eqs. (83) and (85) by either
Eq. (52) or Eq. (64). The subroutine for the Riemann solver is called once for every pair of
particles to calculate P∗ and v∗ in Eqs. (83) and (85).

Step 3: Time evolution. We update xi , xi , and ui according to Eqs. (86), (83), and (85):

xi (t + �t) = xi (t) + ẋ∗
i , �t,

ẋi (t + �t) = ẋi (t) + �ẋi , (88)

ui (t + �t) = ui (t) + �ui .
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Step 4: Density updation. According to the updated positions of particles, we update the
density distribution. The smoothing length of each particle is also updated. The time step
�t for the next integration is also determined. We turn to Step 1 for the next time integration.

4. NUMERICAL EXAMPLES

The present method was tested on a variety of 1D, 2D, and 3D problems, a few of which
are described below. Other sets of test calculations will be described elsewhere.

In determining the amount of the time step �t , we have to consider the Courant condition,
which is in spirit similar to the Courant condition for the grid-based Lagrangian methods:

�t = CCFL min
i

{[
mi

�i

]1/d
/

Cs,i

}
. (89)

The numerical experiments show that we can safely use CCFL ≈ 0.5 in most hydrodynamical
problems. Note that we do not need to consider the (effective) diffusion time scale that is
related to the artificial viscosity adopted by the standard SPH and other particle methods.
Thus �t in the present method can be much larger than that in the other SPH methods.

The following examples are calculated with the Fortran program in which the single
precision real number is used. To accelerate the computation we use the data structure
based on link lists [16].

Five cycles of iterations in the Riemann solver are sufficient for the following test
problems.

4.1. Shock Tube

In order to compare the capabilities of the present method and standard SPH we test
our method against the shock-tube problems, for which the exact solutions are available.
The density variation in the first problem is not so large that we can use both the variable
smoothing length and the constant smoothing length. The initial parameters of the problem
are

�L = 1, �R = 0.5,

PL = 1, PR = 0.2, (90)

vx,L = 0, vx,R = 0,

where the subscript L denotes the variable on the left-hand side of the initial discontinuity,
and R denotes the variable on the right-hand side. The ratio of specific heats is � = 7/5.
The Mach number of the resultant shock wave is 1.526. The value of the postshock pressure
is P∗ = 0.5099. Figure 2 plots the snapshot at t = 0.2 by the present method with the
cubic spline approximation for the convolution equation (64) and the variable smoothing
length (� = 1, Csmooth = 2.0). The method with the linear approximation for the convolution
equation (52) gives very similar results. Figure 3 plots the corresponding result of the
standard SPH where we used the “standard” artificial viscosity (� = 1, 	 = 2) described in
the review paper by Monaghan [18]. In both cases, the number of equal-mass particles is
80 (40) on the left(right)-hand side of initial discontinuity (i.e., �xL = 0.005, �xR = 0.01).
The solid lines correspond to the analytic solution. In this problem, these two methods
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FIG. 2. Results of the shock-tube problem in which the Mach number is 1.526. The right-hand side of the
initial discontinuity includes 40 equal-mass particles. The open circles plot the snapshot at t = 0.2 by the present
method with the cubic spline approximation for the convolution equation (64) and the variable smoothing length
(� = 1, Csmooth = 2.0). The solid lines correspond to the analytic solution.

give similar results except for the contact discontinuity, where the standard SPH produced
a “wiggle” in pressure and specific internal energy. This is due to the inconsistency of
EoM of the standard SPH (45). The present method produced the smooth distribution of
internal energy at the contact discontinuity and hence provided the almost constant pressure
distribution at the density discontinuity.

The total energy of the system (−0.4 < x < 0.4) is defined as

∫ 0.4

−0.4

1

2
�u dx = 1.2. (91)

The initial numerical value of the total energy of the particle system was

∑
i

mi ui = 1.20000017, (92)
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FIG. 3. Results of the shock-tube problem in which the Mach number is 1.526. The open circles plot the
snapshot at t = 0.2 by the standard SPH. The solid lines correspond to the analytic solution.

where the last few digits have no significant meaning in this Fortran single precision
calculation. The final (t = 0.2) value of the total energy of the particle system was found
to be

∑
i

mi

(
1

2
ẋ2

i + ui

)
= 1.20003033. (93)

The relative error remains sufficiently small (�E/E < 10−4) when we change �t in the
other runs. Thus the error of the total energy is only due to the round-off error of the single
precision calculation, and not due to the truncation errors in the numerical modeling of
the evolution. This result guarantees the strict conservation property of the present scheme
(see Section 3.4).

The present method spent 0.17 s for the total 52 time steps (�t ≈ 0.004) to compute with
the Hewlett–Packard workstation C240 (PA-RISC 8200/236 MHz), which corresponds to
3.27 × 10−3 s per step and 2.72 × 10−5 s per particle. In contrast the standard SPH method
used 956 time steps (�t ≈ 0.0002) for the stable evolution in this problem, because the
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FIG. 4. Same as Fig. 2 except that we used the constant smoothing length h = 0.01.

artificial viscosity limits �t . Indeed numerical experiments show that larger �t causes
unphysical oscillations in the solution. As a result the standard SPH method spent 1.35 s to
finish the calculation. It corresponds to 1.4 × 10−3 s per step and 1.2 × 10−5 s per particle.
This means that the present method is about two times slower than the standard SPH for
the required operations per particle, but the present method tends to take much less (total)
computation time than the standard SPH does.

Figure 4 plot the result of the present method where we used the constant smoothing
length h = 0.01. The rarefaction wave on the left-hand side is described less accurately
than in Fig. 2, as expected, because the smoothing length in the high-density region in
Fig. 2 is smaller than the constant smoothing length in Fig. 4. The method with the constant
smoothing length has no advantage over the method with the variable smoothing length
even in this kind of shock-tube problem, where the density variation is not so large.

Figure 5 plots the results of the present method with the first-order Riemann solver where
we set ∂�/∂s = ∂ P/∂s = ∂v/∂s = 0 in the Riemann solver. The sharp profiles at the shock
front and the head and tail of the rarefaction wave are smeared out, as in the grid-based first-
order Godunov method. In this calculation we do not need to calculate the gradients of P and
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FIG. 5. Same as Fig. 2 except that we used the first-order Riemann solver.

vx . However, the difference between the computation times of the first- and second-order
method is negligible. There is no reason to use this first-order method.

In Fig. 6, the results of the standard Sod’s shock tube [23] are plotted. The initial param-
eters of the problem are the following:

�L = 1, �R = 0.125,

PL = 1, PR = 0.1, (94)

vx,L = 0, vx,R = 0.

The ratio of specific heats is � = 7/5. The solid lines correspond to the analytic solution.
The number of the equal-mass particles in the x-direction is 40 on the right-hand side of
the initial discontinuity. We used the variable smoothing length (� = 1, Csmooth = 2.0).

4.2. Extreme Blast Wave

To explore the capability of the present method, we tested our method against an extremely
strong shock-tube problem. The initial parameters of the problem are
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FIG. 6. Results of the Sod’s shock-tube problem using the present method with the cubic spline approxima-
tion for the convolution equation (64) and the variable smoothing length (� = 1, Csmooth = 2.0). The solid lines
correspond to the analytic solution.

�L = 1, �R = 1,

PL = 3000, PR = 10−7, (95)

vx,L = 0, vx,R = 0.

where the initial pressure of the gas on the left-hand side is 3 × 1010 times that of the right-
hand side. The ratio of specific heats is � = 5/3. The Mach number is as large as 105. We
used 100 particles on each side of the initial discontinuity. Figure 7 plots the result of the
present method where the cubic spline approximation for the convolution Eq. (64) and
the variable smoothing length are used (� = 1, Csmooth = 2.0). Even in this severe problem,
the present method gave stable and accurate results and was free from penetration problems.
The pressure distribution shows a small wiggle at the contact surface. This is due to the
approximation for the convolution. Figure 8 plots the result of the present method with
the linear interpolation Eq. (52). The amplitude of the pressure wiggling at the contact
surface is slightly larger than that of the cubic spline result. In order to eliminate this
unphysical wiggling, we need to develop an approximation for the numerical convolution
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FIG. 7. Results of 1D calculation for the extremely strong shock-tube problem in which the Mach number is
about 105. We used 100 particles on each side of the initial discontinuity. The open circles plot the result of the
present method where the cubic spline approximation for the convolution equation (64) and the variable smoothing
length (� = 1, Csmooth = 2.0) are used. A small wiggle in the pressure distribution at the contact surface is due to
the approximation for the convolution.

more accurate than Eq. (64). Numerical experiments shows that the standard SPH cannot
produce acceptable results, at least with � = 1, � ≈ 1, and 	 ≈ 2. The possible fine-tuning
of the parameters in the standard SPH may enable the calculation in this case. Note that
the present method can describe this extreme phenomena with the same parameters (� = 1,
Csmooth = 2.0) used in the other test problems, without any tuning of the method.

The accurate calculation with the single precision real numbers in the Fortran program
is due to the conservative formulation with the internal specific energy u instead of the
total energy e(=v2/2 + u) or E(=�v2/2 + �u), which are usually used in the grid-based
conservative numerical schemes (see Section 3.4). If we adopt e or E as the main variable
for the integration, we have to do the subtraction to obtain u(=e − v2/2), which brings
a huge error into the numerical value of u in the extremely supersonic motion (i.e., when
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FIG. 8. Same as Fig. 7 except that we used the linear interpolation in the convolution equation (52). The
amplitude of the pressure wiggling at the contact surface is slightly larger than that of the cubic spline result.

u � e ≈ v2/2). In this sense our method has a potential advantage over the grid-based
higher order Godunov methods, at least in describing extremely supersonic flows.

4.3. Wind Tunnel

To test the present method against a multidimensional problem, we adopt the following
wind-tunnel problem [12], which can be in principle directly compared with the laboratory
experiment. The geometry is a two-dimensional channel with a 15◦ wedge on the lower
wall. A 15◦ expansion corner is also included. The inflow Mach number is 2. This kind of
problem is poorly suited to the particle method because a rigid-wall boundary condition
must be set up at the wall of the tunnel. We present this test problem only to demonstrate
the capability of our scheme.

Figure 9 shows our method’s results. Mach-number contours from 0.92 to 1.97 with an
increment of 0.05 are plotted. Figure 10 shows particle positions. In this calculation, we
realized the rigid-wall boundary condition by placing “ghost particles” in the wall. The
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FIG. 9. Results of calculation on a “fifteen degree wedge channel flow” problem. Initially 32 × 96 particles
are flowing inside the channel. Mach-number contours from 0.92 to 1.97 with an increment of 0.05 are plotted.

FIG. 10. Same as in Fig. 9 but positions of particles are plotted. The crosses denote the positions of “ghost
particles” that are introduced to mimic the rigid-wall boundary condition.

FIG. 11. Results of calculation on a “fifteen degree wedge channel flow” problem with the first-order Riemann
solver. Initially 32 × 96 particles are flowing inside the channel. The contour levels are the same as in Fig. 9.

FIG. 12. Results of calculation on a “fifteen degree wedge channel flow” problem with the standard SPH. The
standard artificial viscosity with � = 1, 	 = 2 is used. Initially 32 × 96 particles are flowing inside the channel.
The contour levels are the same as in Fig. 9.
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FIG. 13. Results of calculation on a “fifteen degree wedge channel flow” problem with the standard SPH. The
standard artificial viscosity with � = 2, 	 = 4 is used. Initially 32 × 96 particles are flowing inside the channel.
The contour levels are the same as in Fig. 9.

inflowing particles outside of the left-hand side boundary were prepared at appropriate
time steps. The variable smoothing length is used (� = 1, Csmooth = 1.0). Initially, 32 ×
96 particles were flowing inside the channel, which may be compared to the 32 × 96 grids
finite-difference calculation in [12]. Our results were satisfactory. For comparison, Fig. 11
shows the result for the first-order Riemann solver. The sharp features are smeared out.

Figure 12 shows the results of calculation with the standard SPH, where the standard
artificial viscosity with � = 1, 	 = 2 is used. Note that the contour levels are the same as
those in Fig. 9. Owing to the moderate strength of the shocks in this problem, the standard
SPH could produce reasonable results except for the region just after the Mach stem on
the upper wall. A small hollow semicircle seen at x ≈ 0.5, y ≈ 1 corresponds to the small
value of the Mach number (=0.806) that is caused by an exceedingly large value of the
postshock pressure. The calculations with larger values of the artificial viscosity parameters
tend to remedy this pressure overshooting. Figure 13 shows the results of the standard SPH
with � = 2, 	 = 4, where the minimum value of the Mach number behind the Mach stem is
0.957. In this case, however, the sharp features are smeared out. Even in this two-dimensional
problem of moderate Mach number, the present method shows its potential ability to analyze
supersonic flows.

It is clear that a grid-based method must be used in the actual study of this kind of steady
rigid-wall boundary problem. This result is presented only to demonstrate the capability
of this particle scheme. The present method becomes more useful when we study the
hydrodynamical problems without rigid boundaries that are common in astrophysics and
space sciences.

5. SUMMARY

Smoothed particle hydrodynamics is reformulated by the formal convolution of the orig-
inal hydrodynamics equations, and by a new action principle, in which the second-order
(in h) approximation is used for the kinetic term of the Lagrangian function. The force
acting on each particle is determined by solving the Riemann problem for each particle
pair. The prescription for a variable smoothing length is also shown. These techniques are
implemented in the strict conservation form. Numerical examples involving an extremely
strong shock are shown. The other test calculations will be described elsewhere.

Although the method with a spatially constant smoothing length is formulated in a rigor-
ous manner, the method with the variable smoothing length is based on a crude approxima-
tion (Eqs. (79) and (80)). A more refined technique for the variable smoothing length is to
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be studied. A better approximation than the cubic spline interpolation in the numerical con-
volution is required to eliminate the “wiggle” at the contact discontinuity in the blast-wave
problems (see Section 4.2).

This paper has presented several concepts that are not discussed in detail in the literature.
Those are the convolution of the original fluid equation (Eqs. (20) and (24)), the definition
and approximation for the velocity field (Eqs. (34) and (39)), and the modification of the
force due to dissipation (Eqs. (66) and (67)). Incorporating these concepts, the final evolution
equation was cast into a form similar to the standard SPH equation. Therefore those concepts
may enable the rigorous examination of the accuracy and stability of the method and may
enable further modification.

The numerical examples in Section 4 show that the present particle method based on the
Riemann solver can handle severe problems with strong shocks, which might include the
description of explosion/implosion and supersonic jet phenomena. In this respect, further
modification of the SPH method in modeling relativistic flows is promising with the help
of a relativistic Riemann solver [15]. In addition, the Lagrangian particle methods have
advantages over the Eulerian grid-based methods in describing chemically reacting (multi)
fluids and radiatively heating/cooling fluids [11]. This is because we can simply assign the
chemical composition and entropy to each particle as a fluid element. This direction has a
wide area of applications.

APPENDIX: DERIVATION OF THE EQUATION OF MOTION

In this section we show the derivation of the equation of motion from the Euler–Lagrange
equation (Eq. (42)).

∂L

∂xi
= −

∑
k

mk

∫
∂u

∂xi
W (x − xk, h) dx − mi

∫
u

∂

∂xi
W (x − xi , h) dx. (A.1)

The first term on the RHS of this equation becomes

−
∑

k

mk

∫
∂u

∂xi
W (x − xk, h) dx

= −
∑

k

mk

∫
P

� 2

∂�

∂xi
W (x − xk, h) dx

= −
∑

k

mk

∫
P

� 2
mi

∂W (x − xi , h)

∂xi
W (x − xk, h) dx. (A.2)

Before we manipulate the second term on the RHS of Eq. (A.1), we note that

∂W (x − xi , h)

∂xi
= −∂W (x − xi , h)

∂x
. (A.3)

We also obtain ∫
f (x)

∂W (x − xi , h)

∂x
dx = −

∫
∂ f (x)

∂x
W (x − xi , h) dx (A.4)

by integration by parts and W (x) → 0 (|x| → ∞).
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Using the above identities, we can transform the second term on the RHS of Eq. (A.1) as

−mi

∫
u

∂

∂xi
W (x − xi , h) dx

= +mi

∫
u

∂

∂x
W (x − xi , h) dx

= −mi

∫
∂u

∂x
W (x − xi , h) dx

= −mi

∫
P

� 2

∂�

∂x
W (x − xi , h) dx

= −mi

∫
P

� 2

∑
j

m j
∂W (x − x j , h)

∂x
W (x − xi , h) dx

= mi

∫
P

� 2

∑
j

m j
∂W (x − x j , h)

∂x j
W (x − xi , h) dx. (A.5)

As a result, the Euler–Lagrange equation gives the following:

ẍi = −
∑

j

m j

∫
P

� 2

∂

∂xi
W (x − xi , h)W (x − x j , h) dx

+
∑

j

m j

∫
P

� 2

∂

∂x j
W (x − xi , h)W (x − x j , h) dx. (A.6)
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